Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 13: 921324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147510

RESUMEN

Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy-Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4-15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.

2.
Sci Rep ; 11(1): 7122, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782491

RESUMEN

Since the first reported case of the new coronavirus infection in Wuhan, China, researchers and governments have witnessed an unseen rise in the number of cases. Thanks to the rapid work of Chinese scientists, the pathogen now called SARS-CoV-2 has been identified and its whole genome was deposited in public databases by early January 2020. The availability of the genome has allowed researchers to develop Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays, which are now the gold-standard for molecular diagnosis of the respiratory syndrome COVID19. Because of the rising number of cases and rapid spreading, the world has been facing a shortage of RT-PCR supplies, especially the ones involved in RNA extraction. This has been a major bottleneck to increase testing capacity in many countries that do not significantly manufacture these supplies, such as Brazil. Additionally, RT-qPCR scalability is highly dependent on equipment that usually performs testing of 96 samples at a time. In this work, we describe a cost-effective molecular NGS-based test for diagnosis of COVID19, which uses a single-step RNA extraction and presents high scalability and accuracy when compared to the gold-standard RT-qPCR. A single run of the NGS-based test using the Illumina NextSeq 550 mid-end sequencing equipment is able to multiplex 1,536 patient's samples, providing individual semi-qualitative results (detected, not detected). Detected results are provided with fragments per million (FPM) values, which was demonstrated to correlate with RT-qPCR Cycle Threshold (CT) values. Besides, usage of the high-end Illumina Novaseq platform may yield diagnostic for up to 6144 samples in a single run. Performance results when compared with RT-qPCR show general accuracy of 96%, and 98% when only samples with CT values (gene N) lower than 30 are considered. We have also developed an online platform, termed VarsVID, to help test executors to easily scale testing numbers. Sample registering, wet-lab worksheets generation, sample sheet for sequencing and results' display are all features provided by VarsVID. Altogether, these results will contribute to control COVID19 pandemics.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , COVID-19/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...